Изменение энтропии в биологических системах. Энтропия и энергия в биологических системах Энтропия в эволюции биологических систем

Одним из важных законов термодинамики считается закон энтропии.

Понятие энтропии характеризует ту часть полной энергии системы, которая не может быть использована для производства работы. Поэтому в отличие от свободной энергии она представляет собой деградированную, отработанную энергию. Если обозначить свободную энергию через F, энтропию через S, то полная энергия системы Е будет равна Е = F+ ВТ, где Т – абсолютная температура по Кельвину.

Согласно второму закону термодинамики энтропия в замкнутой системе постоянно возрастает и в конечном счете стремится к своему максимальному значению. Следовательно, по степени возрастания энтропии можно судить об эволюции замкнутой системы, а тем самым и о времени ее изменения. Так впервые в физическую науку были введены понятия времени и эволюции, связанные с изменением систем. Но понятие эволюции в классической термодинамике рассматривается совсем иначе, чем в общепринятом смысле. Это стало вполне очевидным после того, когда немецкий ученый Л. Баяьцман(1844–1906) стал интерпретировать энтропию как меру беспорядка (хаоса) в системе.

Таким образом, второй закон термодинамики можно было теперь сформулировать так: замкнутая система, предоставленная самой себе, стремится к достижению наиболее вероятного состояния, заключающегося в ее максимальной дезорганизации. Хотя чисто формально дезорганизацию можно рассматривать как самоорганизацию с отрицательным знаком или самодезорганизацию, тем не менее, такой взгляд ничего общего не имеет с содержательной интерпретацией самоорганизации как процесса становления качественно нового, более высокого уровня развития системы. Но для этого необходимо было отказаться от таких далеко идущих абстракций, как изолированная система и равновесное состояние.

Между тем классическая термодинамика именно на них как раз и опиралась и поэтому рассматривала, например, частично открытые системы или находящиеся вблизи от точки термодинамического равновесия как вырожденные случаи изолированных равновесных систем.

Наиболее фундаментальным из таких понятий, как уже отмечалось выше, стало понятие открытой системы, которая способна обмениваться с окружающей средой веществом, энергией и информацией. Поскольку между веществом и энергией существует взаимосвязь, можно сказать, что система в ходе своей эволюции производит энтропию, которая, однако, не накапливается в ней, а удаляется и рассеивается в окружающей среде. Вместо нее из среды поступает свежая энергия и именно вследствие такого непрерывного обмена энтропия системы может не возрастать, а оставаться неизменной или даже уменьшаться. Отсюда становится ясным, что открытая система не может быть равновесной, потому ее функционирование требует непрерывного поступления энергии и вещества из внешней среды, вследствие чего неравновесие в системе усиливается. В конечном итоге прежняя структура разрушается. Между элементами системы возникают новые когерентные, или согласованные, отношения, которые приводят к кооперативным процессам. Так, схематически могут быть описаны процессы самоорганизации в открытых системах, которые связаны с диссипацией, или рассеянием, энтропии в окружающую среду.



Некоторые особенности термодинамики живых систем. Второе начало термодинамики устанавливает обратную зависимость энтропии и информации. Информация(I) является важным фактором эволюции биологических систем – это мера организованности системы, то есть упорядоченности расположения и движения её частиц. Информация выражается в битах, причём 1 бит информации эквивалентен 10 -23 Дж/К (очень малой величине), но в любой системе имеет место закон сохранения: I + S = const

В биологических системах химические реакции протекают при постоянных объёме и давлении, поэтому, обозначив изменение общей энергии системы как DE , способность системы совершать полезную работу можно выразить уравнением:

Это уравнение можно записать и в другой форме:

означающей, что общий запас энергии в системе расходуется на совершение полезной работы и на рассеяние её в виде теплоты.

Другими словами, и в биологической системе изменение общей энергии системы равно изменениям энтропии и свободной энергии .В системе при постоянных температуре и давлении самопроизвольно могут совершаться только такие процессы, в результате которых энергия Гиббса уменьшается. Самопроизвольный процесс приводит к состоянию равновесия при котором DG = 0. Из этого состояния без внешнего воздействия система выйти не может. Для живого организма состояние термодинамического равновесия означает его гибель. Поэтому для функционирующих открытых систем вводят представление о стационарном состоянии , для которого характерно постоянство параметров системы, неизменность во времени скоростей притока и удаления веществ и энергии.При этом открытая система в каждый данный момент не отвечает условиям стационарного состояния, только при рассмотрении среднего значения параметров открытой системы за сравнительно большой промежуток времени, установлено их относительное постоянство. Таким образом, открытая система в стационарном состоянии во многом сходна с системой, находящейся в термодинамическом равновесии – для них наблюдается неизменность свойств системы во времени (табл. 5).

Минимальное значение свободной энергии соответствует состоянию равновесия – стационарному состоянию .

Таблица 5

Свойства термодинамически равновесных и стационарных систем

Состояние термодинамического равновесия Стационарное состояние
1. Отсутствие обмена с окружающей средой, веществом и энергией 1. Непрерывный обмен с внешней средой, веществом и энергией
2. Полное отсутствие в системе каких-либо градиентов 2. Наличие постоянных по величине градиентов
3. Энтропия системы постоянна и соответствует максимальному в данных условиях значению 3. Энтропия системы постоянна, но не соответствует максимальному в данных условиях значению
4. Изменение энергии Гиббса равно нулю 4. Для поддержания стационарного состояния необходимы постоянные затраты энергии Гиббса
5. Система нереакционноспособная и не совершает работу против внешних воздействий. Скорости процессов, протекающих в противоположных направлениях равны 5. Реакционноспособность (работоспособность) системы постоянна и не равна нулю. Скорость процесса в одном из направлений больше, чем в другом
Зависимость между изменениями свободной энергии и изменениями энтропии в системе и окружающей среде в условиях постоянства температуры и давления показана на рис. 8. Если система (в том числе живой организм) претерпевает какие-либо превращения, ведущие к установлению равновесия, то общая энергия системы и окружающей среды остаётся постоянной, а общая энергия самой системы может либо уменьшаться, либо оставаться неизменной, либо увеличиваться. В ходе этих превращений система либо отдаёт тепло внешней среде, либо поглощает извне. Общая энтропия системы и окружающей среды будет увеличиваться до тех пор, пока не будет, достигнут максимум , соответствующий состоянию равновесия. Стремление энтропии к максимуму является истинной движущей силой любых процессов. Однако это не означает, что все процессы, ведущие к установлению равновесия должны сопровождаться увеличением энтропии самой системы. Энтропия самой системы может увеличиваться, уменьшаться или оставаться неизменной. Если энтропия системы уменьшается, то, согласно второму закону термодинамики, энтропия окружающей среды должна увеличиваться таким образом, чтобы общая энтропия системы и окружающей среды увеличивалась. Именно это и происходит, когда растёт живой организм: энтропия организма (как системы ) уменьшается, а энтропия окружающей среды увеличивается. Математическими выражениями второго начала термодинамики для открытых систем являются:
Рис. 8. Возможные изменения свободной энергии и энтропии рассматриваемой системы и окружающей среды, когда температура, давление и объём системы постоянны.

где – общее изменение энтропии системы за промежуток времени ; – производство энтропии внутри системы, обусловленное протеканием в ней необратимых процессов (например, деструкция сложных молекул пищевых веществ и образование большого числа более простых молекул); – изменение энтропии, обусловленное взаимодействием открытой системы с окружающей средой;

где – изменение энергии Гиббса, противоположное по знаку изменению энтропии; – изменение энергии Гиббса внутри системы; – разница между изменением энергии Гиббса внутри системы и внешней среде.при стационарном состоянии рассеяние энергии Гиббса открытой системой оказывается минимальным. Живой организм, представляющий открытую систему, поставлен природой в выгодные с точки зрения энергообеспечения условия: поддержание относительного постоянства его внутренней среды, называемого в биологии гомеостазисом требует минимального потребления энергии Гиббса .

Таким образом,живой организм – это открытая система , обменивающаяся с окружающей средой энергией, материей и информацией Жизнедеятельность биологических объектов показывает, что они «не хотят» подчинятся законам линейной термодинамики для изолированных систем , для которых устойчивым является равновесное состояние с минимумом свободной энергии и максимумом энтропии.

Многие системы неживой и особенно живой природы требуют принципиально другого подхода – как к сложным самоорганизующимся объектам , в которых идут неравновесные нелинейные процессы когерентного характера . Физику живого можно рассматривать как феномен пост - неклассической физики. С возникновением теоретической базы биологии, развитием молекулярной биологии и генетики удаётся объяснить механизмы организации живого, передачи генетического кода, синтеза ДНК, аминокислот, белкови других важных для жизни молекулярных соединений физико-химическими причинами .

Рассмотрена одна из наиболее важных термодинамических функций - энтропия. Описаны свойства этой функции и значение, которое она имеет в биосистемах.

ЭНТРОПИЯ БИОСИСТЕМ

ВВЕДЕНИЕ

Среди термодинамических функций, характеризующих энергетическое состояние биологического объекта, исключительно важное место принадлежит энтропии. Понятие энтропии было введено в 1865 году Рудольфом Клаузиусом, и с тех пор эта функция привлекает внимание физиков и физикохимиков. Широко используется энтропия и биологами , что вполне понятно. Ведь живой организм - это прежде всего энергетическая система, где действуют те же законы термодинамики, что и в неживой природе. Следует, однако, учесть, что живые организмы характеризуются некоторыми особенностями, которые отсутствуют у физических объектов. Это, как известно, размножение, развитие и т.д. Поэтому энергетический обмен таких систем обладает качественным своеобразием и требует специального анализа.

Почему для этого анализа мы взяли именно энтропию? Это связано с тем, что данная функция дает наиболее полную и в то же время обобщенную характеристику системы. Она может указывать, какие процессы возможны в данных условиях и до какого предела они могут идти.

ЧТО ТАКОЕ ЭНТРОПИЯ

Энтропия - очень "скользкая" термодинамическая функция. Многие о ней слышали, но далеко не все представляют, что это такое. Конечно, можно сказать (как это сделает физик), что изменение энтропии системы при равновесном процессе равно отношению теплоты, сообщенной системе, к абсолютной температуре: dS = dQ / T, что с повышением температуры (неадиабатическим путем) энтропия системы возрастает, что она представляет собой функцию состояния, то есть ее изменение не зависит от формы пути и, следовательно, в замкнутом контуре ее изменение равно нулю и т.д. Но все это мало удовлетворит биолога, поэтому начнем несколько издалека.

В биосистемах протекают самые разные энергетические процессы: дыхание, фотосинтез, мышечное сокращение, транспорт веществ и т.д. Однако при всем качественном разнообразии эти процессы можно попытаться свести к двум типам: обратимые и необратимые. Обратимый процесс - это такой, при котором система в каждый данный момент времени находится в состоянии, бесконечно близком к термодинамическому равновесию, и достаточно лишь незначительно изменить условия, чтобы процесс был обращен. При этом под термодинамическим равновесием понимают такое состояние системы, когда градиенты различных видов энергии (химической, электрической) выровнены и способность системы совершать работу равна нулю. Обращение обратимого процесса не вызывает остаточных изменений в окружающей среде.

В отличие от этого при необратимом процессе система изменяется по направлению к конечному состоянию (при самопроизвольном протекании процесса - к состоянию равновесия) с определенной скоростью. При этом часть свободной энергии системы (то есть той энергии системы, за счет которой может совершаться работа при постоянной температуре) теряется в виде тепла. Например, если совершается механическая работа, то часть затраченной на нее свободной энергии теряется при трении. Для того чтобы обратить данный процесс, необходимо компенсировать эти потери. Следовательно, обращение необратимого процесса связано с остаточными изменениями в окружающей среде. Потери энергии при необратимых процессах, которые происходят обычно в виде тепла, и характеризует энтропия. Таким образом, энтропия отражает ту часть энергии системы, которая рассеялась, деградировала в тепловой форме и не может уже быть использована для совершения работы при постоянной температуре. Из сказанного становится ясным, что при обратимых процессах изменение энтропии равно нулю (DS = 0), а при необратимых оно положительно (DS > 0). Таким образом, чем меньше в системе градиенты энергии и чем больше в ней рассеянной в виде тепла деградированной энергии, тем больше ее энтропия.

Особенностью биосистем является то, что в них практически нет обратимых процессов. Все процессы, которые в них протекают, носят необратимый характер, то есть сопровождаются увеличением энтропии. Следовательно, в биосистемах не вся затрачиваемая при данном процессе свободная энергия переходит в полезную работу. Часть ее рассеивается в виде тепла. Отношение количества совершенной работы к количеству затраченной на нее свободной энергии называется коэффициентом полезного действия биологического процесса. Так, мышечное сокращение совершается с КПД ~ 30%, гликолиз ~ 36% и т.д. Как видим, потери свободной энергии при этих процессах весьма велики. Встречаются, однако, и такие процессы, которые близки к обратимым, то есть КПД которых высок. Например, свечение некоторых тропических насекомых имеет КПД 98-99%, разряд электрических рыб - 98%. Причина такого высокоэффективного использования свободной энергии пока не совсем ясна. Таким образом, мы приходим к выводу, что, чем больше увеличение энтропии при данном процессе, тем более он необратим.

БИОСИСТЕМЫ И ВТОРОЙ ПРИНЦИП ТЕРМОДИНАМИКИ

Значение энтропии особенно четко проявляется при рассмотрении второго принципа термодинамики . Этот принцип, как известно, представляет собой фундаментальный закон природы и в общей форме устанавливает, что в изолированной системе энергия самопроизвольно может переходить только от более высокого уровня к более низкому, а не наоборот. Как постулировал Р. Клаузиус, "теплота не может переходить сама собой от более холодного тела к более теплому".

Пользуясь понятием энтропии, можно придать второму принципу более конкретный вид: в изолированной системе могут самопроизвольно протекать только такие процессы, при которых энтропия или остается постоянной (обратимые), или увеличивается (необратимые). Самопроизвольного уменьшения энтропии в такой системе не происходит.

Применим ли второй принцип термодинамики к биосистемам? Ответ на этот вопрос не так прост. В биосистемах протекают процессы, при которых энергия в соответствии с этим принципом переходит с более высокого на более низкий уровень. Это, например, процесс дыхания. В ходе его богатые энергией соединения (углеводы) распадаются до простых низкоэнергетических веществ - воды и углекислоты, а выделившаяся свободная энергия используется для протекания других процессов (например, синтеза АТФ). Однако хорошо известно, что в живых системах осуществляются и такие процессы, в ходе которых энергия переходит с более низкого на более высокий уровень. Так, например, происходит при фотосинтезе. Здесь, как известно, из простых бедных энергией соединений углекислоты и воды при участии квантов света синтезируются вещества (например, углеводы), содержащие значительный запас свободной энергии. Можно назвать и другие процессы в биосистемах, протекание которых, казалось бы, не подчиняется второму принципу термодинамики. Это позволило некоторым ученым говорить о том, что данный принцип не действует в биосистемах.

Но так ли это? Ответ на этот вопрос связан с выбором системы для рассмотрения. Необходимо рассматривать организм не изолированно от внешней среды, а во взаимодействии с ней. Как известно, в изолированной системе самопроизвольно протекающие процессы приводят ее к состоянию так называемого термодинамического равновесия. При этом состоянии градиенты энергии выровнены, работоспособность системы равна нулю, а ее энтропия максимальна. Однако хорошо известно, что биологические системы, пока они функционируют, никогда не достигают такого состояния. Они всегда обладают работоспособностью, а их энтропия немаксимальна. Это связано с тем, что биосистемы являются не изолированными, а открытыми системами.

Мера неопределенности распределения состояний биологической системы, определяемая как

где II - энтропия, вероятность принятия системой состояния из области х, - число состояний системы. Э. с. может определяться относительно распределения по любым структурным или функциональным показателям. Э. с. используется для расчета биологических систем организации. Важной характеристикой живой системы является условная энтропия, характеризующая неопределенность распределения состояний биологической системы относительно известного распределения

где - вероятность принятия системой состояния из области х при условии, что эталонная система, относительно которой измеряется неопределенность, принимает состояние из области у, - число состояний эталонной системы. В качестве параметров эталонных систем для биосистемы могут выступать самые различные факторы и в первую очередь система переменных внешней среды (вещественных, энергетических или организационных условий). Мера условной энтропии, как и мера организации биосистемы, может применяться для оценки эволюции живой системы во времени. В этом случае эталонным является распределение вероятностей принятия системой своих состояний в некоторые предыдущие моменты времени. И если число состояний системы при этом останется неизменным, то условная энтропия текущего распределения относительно эталонного распределения определяется как

Э. ж. с., как и энтропия термодинамических процессов, тесно связана с энергетическим состоянием элементов. В случае биосистемы эта связь является многосторонней и трудноопределимой. В целом изменения энтропии сопутствуют всем процессам жизнедеятельности и служат одной из характеристик при анализе биологических закономерностей.

Ю. Г. Антомопов, П. И. Белобров.

Общепринятая в физике формулировка второго начала термодинамики гласит, что в закрытых системах энергия стремится распределиться равномерно, т.е. система стремится к состоянию максимальной энтропии.

Отличительной же особенностью живых тел, экосистем и биосферы в целом является способность создавать и поддерживать высокую степень внутренней упорядоченности, т.е. состояния с низкой энтропией. Понятие энтропии характеризует ту часть полной энергии системы, которая не может быть использована для производства работы. В отличие от свободной энергии она представляет собой деградированную, отработанную энергию. Если обозначить свободную энергию через F и энтропию через S , то полная энергия системы Е будет равна:

E = F + ST ;

где Т — абсолютная температура по Кельвину.

По определению физика Э. Шредингера: «жизнь — упорядоченное и закономерное поведение материи, основанное не только на одной тенденции переходить от упорядоченности к неупорядоченности, но и частично на существовании упорядоченности, которая поддерживается все время... — ... средство, при помощи которого организм поддерживает себя постоянно на достаточно высоком уровне упорядоченности (равно на достаточно низком уровне энтропии), в действительности состоит в непрерывном извлечении упорядоченности из окружающей среды».

У высших животных нам хорошо известен тот вид упорядоченности, которым они питаются, а именно: крайне упорядоченное состояние материи в более или менее сложных органических соединениях служит им пищей. После использования животные возвращают эти вещества в очень деградированной форме, однако, не вполне деградированной, так как их еще могут усваивать растения.

Для растений мощным источником «отрицательной энтропии» — негэнтропии - является солнечный свет.

Свойство живых систем извлекать упорядоченность из окружающей среды дало основание некоторым ученым сделать вывод, что для этих систем второе начало термодинамики не выполняется. Однако второе начало имеет еще и другую, более общую формулировку, справедливую для открытых, в том числе живых, систем. Она гласит, что эффективность самопроизвольного превращения энергии всегда меньше 100%. В соответствии со вторым началом термодинамики поддержание жизни на Земле без притока солнечной энергии невозможно.

Обратимся снова к Э. Шредингеру: «Все, что происходит в природе, означает увеличение энтропии в той части Вселенной, где это имеет место. Так и живой организм непрерывно увеличивает свою энтропию, или производит положительную энтропию и, таким образом, приближается к опасному состоянию — максимальной энтропии, представляющему собой смерть. Он может избежать этого состояния, т.е. оставаться живым, только постоянно извлекая из окружающей среды отрицательную энтропию».

Перенос энергии в экосистемах и ее потери

Как известно, в перенос энергии пищи от ее источника — растений — через ряд организмов, происходящий путем поедания одних организмов другими, проходит через пищевую цепь. При каждом очередном переносе большая часть (80-90%) потенциальной энергии теряется, переходя в тепло. Переход к каждому следующему звену уменьшает доступную энергию примерно в 10 раз. Экологическая энергетическая пирамида всегда сужается кверху, поскольку энергия на каждом последующем уровне теряется (рис. 1).

Эффективность природных систем много ниже КПД электромоторов и других двигателей. В живых системах много «горючего» уходит на «ремонт», что не учитывается при расчете КПД двигателей. Любое повышение эффективности биологической системы оборачивается увеличением затрат на их поддержание в устойчивом состоянии. Экологическую систему можно сравнить с машиной, из которой нельзя «выжать» больше, чем она способна дать. Всегда наступает предел, после которого выигрыш от роста эффективности сводится на нет ростом расходов и риском разрушения системы. Прямое удаление человеком или животными более 30-50% годового прироста растительности может уменьшить способность экосистемы сопротивляться стрессу.

Один из пределов биосферы — валовая продукция фотосинтеза, и под него человеку придется подгонять свои нужды, пока не удастся доказать, что усвоение энергии путем фотосинтеза можно сильно повысить, не подвергая при этом опасности нарушить равновесие других, более важных ресурсов жизненного круговорота. Сейчас же поглощается лишь около половины всей лучистой энергии (в основном, в видимой части спектра) и, самое большее, — около 5% — ее в самых благоприятных условиях превращается в продукт фотосинтеза.

Рис. 1. Пирамида энергий. Е — энергия, выделяемая с метаболитами; D = естественные смерти; W — фекалии; R — дыхание

В искусственных экосистемах для получения большего урожая человек вынужден расходовать добавочную энергию. Она необходима для индустриализованного сельского хозяйства, так как этого требуют культуры, специально созданные для него. «Индустриализованное (использующее энергию горючих ископаемых) сельское хозяйство (как, например, практикуемое в Японии) может дать в 4 раза более высокий урожай с гектара, чем сельское хозяйство, в котором всю работу выполняют люди и домашние животные (как в Индии), но оно требует в 10 раз больших затрат разного рода ресурсов и энергии».

Замкнутость производственных циклов по энергетически энтропийному параметру теоретически невозможно, поскольку течение энергетических процессов (в соответствии со вторым началом термодинамики) сопровождается деградацией энергии и повышением энтропии природной среды. Действие второго начала термодинамики выражается в том, что превращения энергии идут в одном направлении в отличие от цикличного движения веществ.

В настоящее время мы являемся свидетелями того, что повышение уровня организации и разнообразия культурной системы уменьшает ее энтропию, но увеличивает энтропию окружающей природной среды, вызывая ее деградацию. В какой степени можно элиминировать эти следствия второго начала термодинамики? Существуют два пути.

Первый путь заключается в уменьшении потерь используемой человеком энергии при ее различных превращениях. Этот путь эффективен в той мере, в которой не приводит к понижению стабильности системы, через которую идет поток энергии (как известно, в экологических системах увеличение числа трофических уровней способствует повышению их устойчивости, но в то же время способствует росту потерь энергии, проходящей через систему).

Второй путь заключается в переходе от повышения упорядоченности культурной системы к повышению упорядоченности всей биосферы. Общество в этом случае повышает организованность природной среды за счет понижения организованности части той природы, которая находится за пределами биосферы Земли.

Превращение веществ и энергии в биосфере как открытой системе

Принципиальное значение для понимания динамики биосферных процессов и конструктивного решения конкретных экологических проблем имеют теория и методы открытых систем, являющиеся одним из важнейших достижений XX столетия.

Согласно классической теории термодинамике, физические и другие системы неживой природы эволюционируют в направлении усиления их беспорядка, разрушения и дезорганизации. При этом энергетическая мера неорганизованности, выраженная энтропией, имеет тенденцию к непрерывному увеличению. Возникает вопрос: каким же образом из неживой природы, системы которой имеют тенденцию к дезорганизации, могла появиться живая природа, системы которой в своей эволюции стремятся к совершенствованию и усложнению своей организации? К тому же, в обществе в целом прогресс очевиден. Следовательно, исходное понятие классической физики — понятие закрытой или изолированной системы не отражает реальности и находится в явном противоречии с результатами исследований в биологии и общественных науках (например, мрачные прогнозы «тепловой смерти» Вселенной). И вполне закономерно, что в 1960-е годы появляется новая (нелинейная) термодинамика, основывающаяся на концепции необратимых процессов. Место закрытой, изолированной системы в ней занимает принципиально иное основополагающее понятие открытой системы, которая способна обмениваться с окружающей средой веществом, энергией и информацией. Средство, с помощью которого организм поддерживает себя на достаточно высоком уровне упорядоченности (равно на достаточно низком уровне энтропии), в действительности состоит в непрерывном извлечении упорядоченности из окружающей среды.

Открытая система , таким образом, заимствует извне либо новое вещество, либо свежую энергию и одновременно выводит во внешнюю среду использованное вещество и отработанную энергию, т.е. она не может оставаться замкнутой. В процессе эволюции система постоянно обменивается энергией с окружающей средой и производит энтропию. При этом характеризующая степень беспорядка в системе энтропия, в отличие от закрытых систем, не аккумулируется, а транспортируется в окружающую среду. Логичен вывод, что открытая система не может быть равновесной , поскольку требует непрерывного поступления из внешней среды энергии или богатого ею вещества. По Э. Шредингеру, вследствие такого взаимодействия система черпает из окружающей среды порядок и тем самым привносит в нее беспорядок.

Взаимодействие между экосистемами

Если между двумя системами существует связь, возможен переход энтропии из одной системы в другую, вектор которого определяется значениями термодинамических потенциалов. Здесь-то и проявляется качественное различие между изолированными и открытыми системами. В изолированной системе ситуация остается неравновесной. Процессы идут, пока энтропия не достигнет максимума.

В открытых системах отток энтропии наружу может уравновесить ее рост в самой системе. Такого рода условия способствуют возникновению и поддержанию стационарного состояния (типа динамического равновесия), называемого текущим равновесием. В стационарном состоянии энтропия открытой системы остается постоянной, хотя и не является максимальной. Постоянство поддерживается за счет того, что система непрерывно извлекает из окружающей среды свободную энергию.

Динамика энтропии в открытой системе описывается уравнением И.Р. Пригожина (бельгийский физик, лауреат Нобелевской премии 1977 г.):

ds/dt = ds 1 /dt + ds e /dt,

где ds 1 /dt - характеристика энтропии необратимых процессов внутри самой системы; ds e /dt - характеристика обмена энтропией между биологической системой и окружающей средой.

Саморегулирование флуктуирующих экосистем

Суммарное уменьшение энтропии в результате обмена с внешней средой при определенных условиях может превысить ее внутреннее производство. Появляется неустойчивость предшествующего неупорядоченного состояния. Возникают и возрастают до макроскопического уровня крупномасштабные флуктуации. При этом возможна саморегуляция , т.е. возникновение определенных структур из хаотических образований. Такие структуры могут последовательно переходить во все более упорядоченное состояние (дис- сипативные структуры). Энтропия в них убывает.

Диссипативные структуры образуются вследствие развития собственных внутренних неустойчивостей в системе (в результате самоорганизации), что отличает их от организации упорядоченных структур, формирующихся под воздействием внешних причин.

Упорядоченные (диссипативные) структуры, спонтанно возникающие из беспорядка и хаоса в результате процесса самоорганизации, реализуются и в экологических системах. Примером может служить пространственно упорядоченное расположение бактерий в питательных средах, наблюдающееся при определенных условиях, а также временные структуры в системе «хищник-жертва», отличающиеся устойчивым режимом колебаний с определенной периодичностью численности популяций животных.

Процессы самоорганизации основываются на обмене энергией и массой с окружающей средой. Это и позволяет поддерживать искусственно создаваемое состояние текущего равновесия, когда потери на диссипацию компенсируются извне. С поступлением новой энергии или вещества в системе возрастает неравновесность. В конечном итоге прежние взаимосвязи между элементами системы, определяющие ее структуру, разрушаются. Между элементами системы устанавливаются новые связи, приводящие к кооперативным процессам, т.е. к коллективному поведению ее элементов. Такова общая схема процессов самоорганизации в открытых системах, названная наукой синергетикой .

Концепция самоорганизации, по-новому освещая взаимосвязь неживой и живой природы, позволяет лучше понять, что весь окружающий нас мир и Вселенная представляют собой совокупность самоорганизующихся процессов, которые лежат в основе любого эволюционного развития.

Целесообразно обратить внимание на следующее обстоятельство. Исходя из случайного характера флуктуации следует, что появление нового в мире всегда обусловлено действием случайных факторов.

Возникновение самоорганизации опирается на принцип положительной обратной связи, в соответствии с которым изменения, возникающие в системе, не устраняются, а накапливаются. В итоге именно это и приводит к возникновению нового порядка и новой структуры.

Точка бифуркации — импульс развития биосферы по новому пути

Открытые системы физической Вселенной (к которым относится и наша биосфера) непрерывно флуктуируют и на определенном этапе могут достигнуть точки бифуркации . Суть бифуркации наиболее наглядно иллюстрирует сказочный витязь, стоящий на распутье. В каком-то месте пути встречается развилка, где необходимо принимать решение. При достижении точки бифуркации принципиально нельзя предугадать, в каком направлении будет дальше развиваться система: перейдет ли она в хаотическое состояние или приобретет новый, более высокий уровень организации.

Для точка бифуркации — импульс к ее развитию по новому, неведомому пути. Какое место займет в нем человеческое общество — предугадать сложно, биосфера же, наиболее вероятно, продолжит свое развитие.

а) система с большей упорядоченностью имеет более высокую энтропию и наоборот;

б) любой физический процесс в изолированной системе повышает энтропию системы;

в) все реальные физические процессы обратимы;

г) во всех биологических системах энтропия всегда отрицательна;

д) энергия и энтропия взаимопревращаемы.

Какое одно утверждение, приведенное ниже, верно?

а) энтропия может превращаться в энергию;

б) любой физический процесс в изолированной системе понижает энтропию системы;

в) понижение энтропии всегда повышает энергию системы;

г) во всех биологических системах энтропия отсутствует.

3-5.96. Правильно выбранные последовательности электромагнитных излучений в порядке убывания длин волн (энергий), это:

а) радиоволны, ультрафиолетовые лучи, инфракрасные лучи;

б) радиоволны, инфракрасные лучи, ультрафиолетовые лучи;

в) ультрафиолетовые лучи, радиоволны, инфракрасные лучи;

г) инфракрасные лучи, радиоволны, ультрафиолетовые лучи.

3-5.97. Увеличению процесса беспорядка в системе соответствует:

а) возрастание энтропии;

б) убывание энтропии;

в) энтропия остается неизменной;

г) возрастание энергии;

д) убывание энергии.

Какое перечисленное ниже излучение обладает наибольшей энергией?

а) микроволновое;

б) инфракрасное;

в) гамма-излучение;

г) реликтовое.

3-5.99. Процесс передачи внутренней энергии без совершения механической работы, называется:

а) теплообмен;

б) броуновское движение;

в) фотосинтез;

г) эффект Комптона.

3-5.100. Ученый, давший имя единице измерения энергии, это:

б) Джоуль;

в) Вольта;

д) Эрстед.

Какое утверждение относительно энергетического состояния системы верно?

а) при обратимом процессе система возвращается в исходное состояние;

б) система закрыта, если она обменивается энергией с окружающей средой;

в) система закрыта, если она обменивается веществом с окружающей средой;

г) система открыта, если в ней идут процессы диффузии.

3-5.102. Действие закона сохранения биомассы Вернадского основывается на:

а) законе сохранения энергии;

б) постоянстве неэнтропии;

в) биогенетическом законе Геккеля;

г) теории диссипативных структур Пригожина;

д) законе сохранения массы.

Какое утверждение относительно процессов в системе верно?

Просмотров