Энтропия растет а мы не делаем. Борьба с энтропией, как отличительная характеристика живого от мертвого. Энтропия в нашей жизни

Сегодня мы вернемся к термодинамике. Попробуем понять, почему хаос так важен и может ли он объяснить загадку, как работает время. Обычно мы говорим о космологии, теории относительности, квантовой механике, физике частиц и другом, но что плохого в том, чтобы на миг нырнуть в 19 век в объятья старомодной термодинамики? Термодинамика не так уж плоха: она помогла осуществить промышленную революцию и в конечном итоге будет ответственна за смерть вселенной. Она заслуживает вашего уважения.

Вопрос будет следующим:

«Допустим, энтропия - это мера беспорядка объектов. Но что в ней такого важного, что она должна быть законом?».

Если вы посмотрите почти на все законы физики, время будет течь почти с опозданием. Сделайте фильм из столкновения двух электронов, а потом запустите фильм в обратном порядке, и вторая версия будет выглядеть так же нормально и физически достоверно, как и первый вариант. На микроскопическом уровне время кажется практически симметричным. Потому что, на этом уровне не работает привычная нам термодинамика.

На макроскопическом уровне все совершенно иначе. Вы не помните будущее, например, не можете склеить яйцо или разделить коктейль на составляющие. И говоря о возможности путешествий во времени, мы подразумеваем только одну стрелу времени, один вектор, одно направление: вперед.

Есть один общий знаменатель, отличающий будущее от прошлого: все запутывается. Вы знаете это как «второй закон термодинамики». Или не знаете. Мне все равно.

Второй закон гласит, буквально, что все разваливается, или что вещи становятся все более и более хаотичными и беспорядочными со временем, но это не совсем так. Правильно так: полная энтропия замкнутой системы возрастает со временем. Энтропия является мерой числа способов, которыми вы можете переворачивать вещи с ног на голову и сохранять все макроскопические величины неизменными.

Весьма школьный пример


На примере все станет понятным. Допустим, у вас было три молекулы воздуха и вы поместили их в левой части коробки. Это очень аккуратный способ организовать вещи. Позвольте природе сделать свое дело - и молекулы разлетятся в разные стороны, и каждая из них проведет половину своего времени в правой части коробки, и другую половину - в левой части.

В любой момент времени вы будете видеть случайный снимок трех молекул. Есть восемь разных путей организовать молекулы, но только два из них (ЛЛЛ, ППП) разместят все три молекулы в одной части контейнера. Это всего лишь 25 % вероятности. В остальное время атомы, скорее всего, будут распределены равномерно. И равномерное распределение - это более высокое состояние энтропии, чем концентрированное.

Вы можете играть в эту же игру, набрав полную ладонь монет и подбрасывая их в воздух. Орел и решка - это правая и левая часть коробки, и наоборот. Проделайте этот жест несколько раз и увидите, что молекулы почти всегда равномерно распределяются.

Большие числа превращают вероятность в закон

Если вы увеличите число молекул воздуха, к примеру, до 10 26 или выше, вероятность подсказывает, что случайные движения в итоге распределят молекулы «равномерно». Благодаря квантовой механике, случайность становится принципиальной составляющей всего этого. То есть, поскольку есть техническая вероятность того, что все молекулы воздуха внезапно покинут вашу спальню, пока вы спите, за несколько минут, это явно не то, чего стоит бояться ночью.

Растущая энтропия - на самом деле закон, поскольку во Вселенной так много частиц, что вероятность того, что все они спонтанно выстроятся в состояние низкой энтропии, ошеломляюще мала. Этот же тип случайно работает в отношении азартных игр и прогнозирования погоды.

Ну или еще пример. Вам выпадает решка два раза подряд, и вы совсем не удивляетесь этому. Но если кому-то решка выпадает сто раз кряду, это становится подозрительным. Чтобы оценить масштаб такого события, представьте себе: если вы будете подбрасывать монетку 10 раз в секунду, у вас уйдет времени в триллион раз больше нынешнего возраста вселенной, прежде чем вы дождетесь результата. Грубо говоря, в определенный момент система становится настолько большой, что шанс на то, что энтропия будет уменьшаться, не просто мал, но крайне близок к нулю. Поэтому мы называем это «вторым законом».

Креационисты среди вас могут использовать это как доказательство, что сложные вещи (вроде людей или динозавров) никогда не смогли бы сформироваться. В конце концов, вы ведь высоко упорядоченный человек, стоит полагать. Если вы облако газа, примите мои извинения. Но если предположить, что вы человек, нет ничего странного в том, что вы существуете как маленький шанс высокого порядка.

Суть правила в том, что энтропия растет во всей вселенной. Например, если вы сделаете хорошенький холодильник, полный холодного воздуха, вы сделаете это за счет высокой энтропии горячего воздуха. Вот почему кондиционер нуждается в выхлопе, а обогреватель - нет. По этой же причине вы не можете построить вечный двигатель. Часть энергии всегда будет преобразовываться в тепло.

Энтропия непрерывно увеличивается со временем. Вы сидите в горячей ванне в прохладной комнате, чувствуете себя тепло и уютно, но потом события начинают принимать угрожающий поворот: вода в номере по температуре приближается к воздуху, вам становится холодно, вас атакуют мурашки.

То же самое касается будущего Вселенной. С течением времени тепло равномерно распределится во Вселенной. Звезды выгорят, черные дыры испарятся, станет темно и холодно. Бум.

Время и второй закон


Физики постоянно спорят на тему того, работает ли второй закон термодинамики наоборот. Другими словами, определяется ли течение времени увеличением энтропии во Вселенной? Шон Кэрролл написал очень интересную книгу на эту тему. лихо связывал «психологическое время», способ нашего запоминания вещей, с «энтропийным временем». Другими словами, если поток энтропии обратить вспять, время будет течь в обратном направлении.

Одной из причин, почему вообще эти идеи набирают обороты, является загадка наблюдателя. Юная вселенная, судя по всему, находилась в состоянии высокого порядка, но нет никаких фундаментальных причин, почему это должно быть так. Вселенная, созданная , должна была бы находиться в состоянии полного хаоса, но вместо этого она была невероятно упорядоченной. Гравитационная система высокой энтропии свернулась в комки (произведя звезды, галактики и черные дыры), но вселенная была гладкой. Почему?

Другие заходят еще дальше. Эрик Верлинде, например, утверждает, что такие явления, как гравитация, вытекают из второго закона термодинамики (и теории струн). Стоит отметить, что интересных идей много. Многие говорят, что время заставляет энтропию расти, но не энтропия порождает время. Для кого-то энтропия это просто то, что происходит.

Или должно произойти с высокой вероятностью.

Когда я учился на первом курсе МВТУ им. Баумана, на занятиях по химии нам рассказали об энтропии . Это было потрясение! Впервые в жизни в естественнонаучной величине я увидел не столько научный, сколько философский и даже этический смысл.

Энтропия - это мера упорядоченности системы. Саму ее нельзя измерить, можно оценить лишь ее увеличение или уменьшение. Например, карандаши в коробке имеют меньшую энтропию, чем карандаши, разбросанные по столу. Кусок мела имеет меньшую энтропию, чем тот же кусок, растолченный в пыль. Книга с текстом имеет меньшую энтропию, чем то же количество чистой бумаги. Собранный кубик Рубика имеет меньшую энтропию, чем разобранный.

Самое интересное в энтропии то (не буду придерживаться строгой физичности для простоты объяснения сути), что в нашем мире она постоянно растет. Вселенная расширяется, рассеивает свое тепло, этот процесс необратим, он ведет к увелечению энтропии и, в пределе, - к тепловой смерти Вселенной. Если все будет продолжаться так, как идет сейчас, этот мир когда-то будет полностью уничтожен. Вот. Грустно.

Но этому процессу можно кое-что противопоставить. Когда растет дерево, оно организует материю и уменьшает энтропию. Когда человек пишет книгу, он уменьшает энтропию. Когда много людей строят город или живут по закону, они уменьшают энтропию. Любая организующая деятельность уменьшает энтропию и, как следствие, противостоит разрушению мира. Я бы сказал больше: сознательная организующая, созидательная деятельность уменьшает энтропию. Хорошо организованное мышление уменьшает энтропию. Таким образом, у нас есть, что противопоставить тепловой смерти Вселенной. Я говорю об этом вполне серьезно, понимая, что мы не единственные существа в этом мире, способные мыслить и сознательно созидать.

Когда я это понял, я стал придерживаться правила уменьшения энтропии . Этого правила нет в физике или химии, оно имеет чисто этическую природу. Суть его в том, что в результате твоей деятельности энтропия должна уменьшаться. Или, другими словами, ты не должен увеличивать энтропию мира, в котором живешь. Это простое правило имеет следующие аспекты:
- давать миру больше, чем брать у него
- оставлять после себя больший порядок, чем был до тебя
- никогда не держать ум пустым, праздным (пустой ум увеличивает энтропию)
- стараться доводить до конца начатые проекты
- стараться как можно меньше требовать от других, но больше - от себя
- не иметь долгов любого плана
- стараться устранять любой беспорядок, с которым сталкиваешься
- и т. п. - продолжать можно долго

Сразу скажу, что мне самому далеко не всегда удается следовать этому правилу. Но я стараюсь.

Энтропия (от др.-греч. ἐντροπία «поворот», «превращение») – широко используемый в естественных и точных науках термин. Впервые введён в рамках термодинамики как функция состояния термодинамической системы, определяющая меру необратимого рассеивания энергии. В статистической физике энтропия характеризует вероятность осуществления какого-либо макроскопического состояния. Кроме физики, термин широко употребляется в математике: теории информации и математической статистике.

В науку это понятие вошло ещё в XIX веке. Изначально оно было применимо к теории тепловых машин, но достаточно быстро появилось и в остальных областях физики, особенно, в теории излучения. Очень скоро энтропия стала применяться в космологии, биологии, в теории информации. Различные области знаний выделяют разные виды меры хаоса:

  • информационная;
  • термодинамическая;
  • дифференциальная;
  • культурная и др.

Например, для молекулярных систем существует энтропия Больцмана, определяющая меру их хаотичности и однородности. Больцман сумел установить взаимосвязь между мерой хаоса и вероятностью состояния. Для термодинамики данное понятие считается мерой необратимого рассеяния энергии. Это функция состояния термодинамической системы. В обособленной системе энтропия растёт до максимальных значений, и они в итоге становятся состоянием равновесия. Энтропия информационная подразумевает некоторую меру неопределённости или непредсказуемости.

Энтропия может интерпретироваться как мера неопределённости (неупорядоченности) некоторой системы, например, какого-либо опыта (испытания), который может иметь разные исходы, а значит, и количество информации. Таким образом, другой интерпретацией энтропии является информационная ёмкость системы. С данной интерпретацией связан тот факт, что создатель понятия энтропии в теории информации (Клод Шеннон) сначала хотел назвать эту величину информацией.

Для обратимых (равновесных) процессов выполняется следующее математическое равенство (следствие так называемого равенства Клаузиуса), где – подведенная теплота, – температура, и – состояния, и – энтропия, соответствующая этим состояниям (здесь рассматривается процесс перехода из состояния в состояние).

Для необратимых процессов выполняется неравенство, вытекающее из так называемого неравенства Клаузиуса, где – подведенная теплота, – температура, и – состояния, и – энтропия, соответствующая этим состояниям.

Поэтому энтропия адиабатически изолированной (нет подвода или отвода тепла) системы при необратимых процессах может только возрастать.

Используя понятие энтропии Клаузиус (1876) дал наиболее общую формулировку 2-го начала термодинамики: при реальных (необратимых) адиабатических процессах энтропия возрастает, достигая максимального значения в состоянии равновесия (2-ое начало термодинамики не является абсолютным, оно нарушается при флуктуациях).

Абсолютная энтропия (S) вещества или процесса – это изменение доступной энергии при теплопередаче при данной температуре (Btu/R, Дж/К). Математически энтропия равняется теплопередаче, деленной на абсолютную температуру, при которой происходит процесс. Следовательно, процессы передачи большого количества теплоты больше увеличивают энтропию. Также изменения энтропии увеличатся при передаче теплоты при низкой температуре. Так как абсолютная энтропия касается пригодности всей энергии вселенной, температуру обычно измеряют в абсолютных единицах (R, К).

Удельную энтропию (S) измеряют относительно единицы массы вещества. Температурные единицы, которые используются при вычислении разниц энтропии состояний, часто приводятся с температурными единицами в градусах по Фаренгейту или Цельсию. Так как различия в градусах между шкалами Фаренгейта и Ренкина или Цельсия и Кельвина равные, решение в таких уравнениях будет правильным независимо от того, выражена энтропия в абсолютных или обычных единицах. У энтропии такая же данная температура, как и данная энтальпия определенного вещества.

Подводим итог: энтропия увеличивается, следовательно, любыми своими действиями мы увеличиваем хаос.

Просто о сложном

Энтропия – мера беспорядка (и характеристика состояния). Визуально, чем более равномерно расположены вещи в некотором пространстве, тем больше энтропия. Если сахар лежит в стакане чая в виде кусочка, энтропия этого состояния мала, если растворился и распределился по всем объёму – велика. Беспорядок можно измерить, например, посчитав сколькими способами можно разложить предметы в заданном пространстве (энтропия тогда пропорциональна логарифму числа раскладок). Если все носки сложены предельно компактно одной стопкой на полке в шкафу, число вариантов раскладки мало и сводится только к числу перестановок носков в стопке. Если носки могут находиться в произвольном месте в комнате, то существует немыслимое число способов разложить их, и эти раскладки не повторяются в течение нашей жизни, как и формы снежинок. Энтропия состояния «носки разбросаны» – огромна.

Второй закон термодинамики гласит, что самопроизвольно в замкнутой системе энтропия не может убывать (обычно она возрастает). Под её влиянием рассеивается дым, растворяется сахар, рассыпаются со временем камни и носки. Эта тенденция объясняется просто: вещи движутся (перемещаются нами или силами природы) обычно под влиянием случайных импульсов, не имеющих общей цели. Если импульсы случайны, всё будет двигаться от порядка к беспорядку, потому что способов достижения беспорядка всегда больше. Представьте себе шахматную доску: король может выйти из угла тремя способами, все возможные для него пути ведут из угла, а прийти обратно в угол с каждой соседней клетки – только одним способом, причём этот ход будет только одним из 5 или из 8 возможных ходов. Если лишить его цели и позволить двигаться случайно, он в конце концов с равной вероятностью сможет оказаться в любом месте шахматной доски, энтропия станет выше.

В газе или жидкости роль такой разупорядочивающей силы играет тепловое движение, в вашей комнате – ваши сиюминутные желания пойти туда, сюда, поваляться, поработать, итд. Каковы эти желания – неважно, главное, что они не связаны с уборкой и не связаны друг с другом. Чтобы снизить энтропию, нужно подвергнуть систему внешнему воздействию и совершить над ней работу. Например, согласно второму закону, энтропия в комнате будет непрерывно возрастать, пока не зайдёт мама и не попросит вас слегка прибрать. Необходимость совершить работу означает также, что любая система будет сопротивляться уменьшению энтропии и наведению порядка. Во Вселенной та же история – энтропия как начала возрастать с Большого Взрыва, так и будет расти, пока не придёт Мама.

Мера хаоса во Вселенной

Для Вселенной не может быть применён классический вариант вычисления энтропии, потому что в ней активны гравитационные силы, а вещество само по себе не может образовать замкнутую систему. Фактически, для Вселенной – это мера хаоса.

Главнейшим и крупнейшим источником неупорядоченности, которая наблюдается в нашем мире, считаются всем известные массивные образования – чёрные дыры, массивные и сверхмассивные.

Попытки точно рассчитать значение меры хаоса пока нельзя назвать удачными, хотя они происходят постоянно. Но все оценки энтропии Вселенной имеют значительный разброс в полученных значениях – от одного до трёх порядков. Это объясняется не только недостатком знаний. Ощущается недостаточность сведений о влиянии на расчёты не только всех известных небесных объектов, но и тёмной энергии. Изучение её свойств и особенностей пока в зачатке, а влияние может быть определяющим. Мера хаоса Вселенной всё время изменяется. Учёные постоянно проводят определённые исследования, чтобы получить возможность определения общих закономерностей. Тогда будет можно делать достаточно верные прогнозы существования различных космических объектов.

Тепловая смерть Вселенной

У любой замкнутой термодинамической системы есть конечное состояние. Вселенная тоже не является исключением. Когда прекратится направленный обмен всех видов энергий, они переродятся в тепловую энергию. Система перейдёт в состояние тепловой смерти, если термодинамическая энтропия получит наивысшие значение. Вывод о таком конце нашего мира сформулировал Р. Клаузиус в 1865 году. Он взял за основу второй закон термодинамики. Согласно этому закону, система, которая не обменивается энергиями с другими системами, будет искать равновесное состояние. А оно вполне может иметь параметры, характерные для тепловой смерти Вселенной. Но Клаузиус не учитывал влияния гравитации. То есть, для Вселенной, в отличие от системы идеального газа, где частицы распределены в каком-то объёме равномерно, однородность частиц не может соответствовать самому большому значению энтропии. И всё-таки, до конца не ясно, энтропия - допустимая мера хаоса или смерть Вселенной?

Энтропия в нашей жизни

В пику второму началу термодинамики, по положениям которого всё должно развиваться от сложного к простому, развитие земной эволюции продвигается в обратном направлении. Эта нестыковка обусловлена термодинамикой процессов, которые носят необратимый характер. Потребление живым организмом, если его представить как открытую термодинамическую систему, происходит в меньших объёмах, нежели выбрасывается из неё.

Пищевые вещества обладают меньшей энтропией, нежели произведённые из них продукты выделения. То есть, организм жив, потому что может выбросить эту меру хаоса, которая в нём вырабатывается в силу протекания необратимых процессов. К примеру, путём испарения из организма выводится около 170 г воды, т.е. тело человека компенсирует понижение энтропии некоторыми химическими и физическими процессами.

Энтропия – это некая мера свободного состояния системы. Она тем полнее, чем меньшие ограничения эта система имеет, но при условии, что степеней свободы у неё много. Получается, что нулевое значение меры хаоса – это полная информация, а максимальное – абсолютное незнание.

Вся наша жизнь – сплошная энтропия, потому что мера хаоса иногда превышает меру здравого смысла. Возможно, не так далеко время, когда мы придём ко второму началу термодинамики, ведь иногда кажется, что развитие некоторых людей, да и целых государств, уже пошло вспять, то есть, от сложного к примитивному.

Выводы

Энтропия – обозначение функции состояния физической системы, увеличение которой осуществляется за счёт реверсивной (обратимой) подачи тепла в систему;

величина внутренней энергии, которая не может быть преобразована в механическую работу;

точное определение энтропии производится посредством математических расчётов, при помощи которых устанавливается для каждой системы соответствующий параметр состояния (термодинамическое свойство) связанной энергии. Наиболее отчётливо энтропия проявляется в термодинамических процессах, где различают процессы, обратимые и необратимые, причём в первом случае энтропия остаётся неизменной, а во втором постоянно растёт, и это увеличение осуществляется за счёт уменьшения механической энергии.

Следовательно, все то множество необратимых процессов, которые происходят в природе, сопровождается уменьшением механической энергии, что в конечном итоге должно привести к остановке, к «тепловой смерти». Но этого не может произойти, поскольку с точки зрения космологии невозможно до конца завершить эмпирическое познание всей «целостности Вселенной», на основе которого наше представление об энтропии могло бы найти обоснованное применение. Христианские теологи полагают, что, основываясь на энтропии, можно сделать вывод о конечности мира и использовать её для доказательства «существования Бога». В кибернетике слово «энтропия» используется в смысле, отличном от его прямого значения, который лишь формально можно вывести из классического понятия; оно означает: среднюю наполненность информацией; ненадёжность в отношении ценности «ожидания» информации.

«Все процессы в мире происходят с увеличением энтропии» - эта расхожая формулировка превратила энтропию из научного термина в какое-то непреложное свидетельство обреченной борьбы человека с окружающим его беспорядком. Но что в оригинале скрывается за этой физической величиной? И как можно посчитать энтропию? «Теории и практики» попытались разобраться в этом вопросе и найти спасение от надвигающегося распада.

Термодинамика и «тепловая смерть»

Впервые термин «энтропия» в 1865 году ввел немецкий физик Рудольф Клаузиус. Тогда он имел узкое значение и использовался в качестве одной из величин для описания состояния термодинамических систем - то есть, физических систем, состоящих из большого количества частиц и способных обмениваться энергией и веществом с окружающей средой. Проблема заключалась в том, что до конца сформулировать, что именно характеризует энтропия, ученый не смог. К тому же, по предложенной им формуле можно было определить только изменение энтропии, а не ее абсолютное значение.

Упрощенно эту формулу можно записать как dS = dQ/T. Это означает, что разница в энтропии двух состояний термодинамической системы (dS) равна отношению количества тепла, затраченного на то, чтобы изменить первоначальное состояние (dQ), к температуре, при которой проходит изменение состояния (T). Например, чтобы растопить лед, нам требуется отдать ему некоторое количество тепла. Чтобы узнать, как изменилась энтропия в процессе таяния, нам нужно будет поделить это количество тепла (оно будет зависеть от массы льда) на температуру плавления (0 градусов по Цельсию = 273, 15 градусов по Кельвину. Отсчет идет от абсолютного нуля по Кельвину (- 273° С), поскольку при этой температуре энтропия любого вещества равна нулю). Так как обе величины положительны, при подсчете мы увидим, что энтропии стало больше. А если провести обратную операцию - заморозить воду (то есть, забрать у нее тепло), величина dQ будет отрицательной, а значит, и энтропии станет меньше.

Примерно в одно время с этой формулой появилась и формулировка второго закона термодинамики: «Энтропия изолированной системы не может уменьшаться». Выглядит похоже на популярную фразу, упомянутую в начале текста, но с двумя важными отличиями. Во-первых, вместо абстрактного «мира» используется понятие «изолированная система». Изолированной считается та система, которая не обменивается с окружающей средой ни веществом, ни энергией. Во-вторых, категорическое «увеличение» меняется на осторожное «не убывает» (для обратимых процессов в изолированной системе энтропия сохраняется неизменной, а для необратимых - возрастает).

За этими скучноватыми нюансами скрывается главное: второй закон термодинамики нельзя без оглядки применять ко всем явлениям и процессам нашего мира. Хороший тому пример привел сам Клаузиус: он считал, что энтропия Вселенной постоянно растет, а потому когда-нибудь неизбежно достигнет своего максимума - «тепловой смерти». Этакой физической нирваны, в которой не протекают уже никакие процессы. Клаузиус придерживался этой пессимистической гипотезы до самой смерти в 1888 году - на тот момент научные данные не позволяли ее опровергнуть. Но в 1920-х гг. американский астроном Эдвин Хаббл доказал, что Вселенная расширяется, а значит, ее

сложно назвать изолированной термодинамической системой. Поэтому современные физики к мрачным прогнозам Клаузиуса относятся вполне спокойно.

Энтропия как мера хаоса

Поскольку Клаузиус так и не смог сформулировать физический смысл энтропии, она оставалась абстрактным понятием до 1872 года - пока австрийский физик Людвиг Больцман не вывел новую формулу, позволяющий рассчитывать ее абсолютное значение. Она выглядит как S = k * ln W (где, S - энтропия, k - константа Больцмана, имеющая неизменное значение, W - статистический вес состояния). Благодаря этой формуле энтропия стала пониматься как мера упорядоченности системы.

Как это получилось? Статистический вес состояния - это число способов, которыми можно его реализовать. Представьте рабочий стол своего компьютера. Сколькими способами на нем можно навести относительный порядок? А полный беспорядок? Получается, что статистический вес «хаотичных» состояний гораздо больше, а, значит больше и их энтропия. Посмотреть подробный пример и рассчитать энтропию собственного рабочего стола можно .

В этом контексте новый смысл приобретает второй закон термодинамики: теперь процессы не могут самопроизвольно протекать в сторону увеличения порядка. Но и тут не стоит забывать про ограничения закона.

Иначе человечество уже давно было бы в рабстве у одноразовой посуды. Ведь каждый раз, когда мы моем тарелку или кружку, нам на помощь приходит простейшая самоорганизация. В составе всех моющих средств есть поверхно-активные вещества (ПАВ). Их молекулы составлены из двух частей: первая по своей природе стремится к контакту с водой, а другая его избегает.

При попадании в воду молекулы «Фэйри» самопроизвольно собираются в «шарики», которые обволакивают частички жира или грязи (внешняя поверхность шарика это те самые склонные к контакту с водой части ПАВ, а внутренняя, наросшая вокруг ядра из частички грязи - это части, которые контакта с водой избегают). Казалось бы, этот простой пример противоречит второму закону термодинамики. Бульон из разнообразных молекул самопроизвольно перешел в некое более упорядоченное состояние с меньшей энтропией. Разгадка снова проста: систему «Вода-грязная посуда после вечеринки», в которую посторонняя рука капнула моющего средства, сложно считать изолированной.

Черные дыры и живые существа

Со времен появления формулы Больцмана термин «энтропия» проник практически во

все области науки и оброс новыми парадоксами. Возьмем, к примеру астрофизику и пару «черная дыра - падающее в нее тело». Ее вполне можно считать изолированной системой, а значит, ее энтропия такой системы должна сохраняться. Но она бесследно исчезает в черной дыре - ведь оттуда не вырваться ни материи, ни излучению. Что же происходит с ней внутри черной дыры?

Некоторые специалисты теории струн утверждают, что эта энтропия превращается в энтропию черной дыры, которая представляет собой единую структуру, связанную из многих квантовых струн (это гипотетические физические объекты, крошечные многомерные структуры, колебания которых порождают все элементарные частицы, поля и прочую привычную физику). Впрочем, другие ученые предлагают менее экстравагантный ответ: пропавшая информация, все-таки возвращается в мир вместе с излучением, исходящим от черных дыр.

Еще один парадокс, идущий вразрез со вторым началом термодинамики - это существование и функционирование живых существ. Ведь даже живая клетка со всеми ее биослоями мембран, молекулами ДНК и уникальными белками - это высокоупорядоченная структура, не говоря уже о целом организме. За счет чего существует система с такой низкой энтропией?

Этим вопросом в своей книге «Что такое жизнь с точки зрения физики» задался знаменитый Эрвин Шредингер, создатель того самого мысленного эксперимента с котом: «Живой организм непрерывно увеличивает свою энтропию, или, иначе, производит положительную энтропию и, таким образом, приближается к опасному состоянию максимальной энтропии, представляющему собой смерть. Он может избежать этого состояния, то есть оставаться живым, только постоянно извлекая из окружающей его среды отрицательную энтропию. Отрицательная энтропия - это то, чем организм питается».

Точнее организм питается углеводами, белками и жирами. Высокоупорядоченными, часто длинными молекулами со сравнительно низкой энтропией. А взамен выделяет в окружающую среду уже гораздо более простые вещества с большей энтропией. Вот такое вечное противостояние с хаосом мира.

Просмотров